Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Oxocyclohexaneacetic acid: catemeric hydrogen bonding and spontaneous resolution of a single conformational enantiomer in an achiral ε-keto acid

Alan Barcon, Andrew P. J. Brunskill, Roger A. Lalancette* and Hugh W. Thompson

Carl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
Correspondence e-mail: rogerlal@andromeda.rutgers.edu

Received 8 September 2010; accepted 13 September 2010

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.039 ; w R$ factor $=0.113 ;$ data-to-parameter ratio $=12.5$.

The asymmetric unit of the title compound, $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}$, consists of a single conformational enantiomer, which aggregates in the catemeric acid-to-ketone hydrogen-bonding mode [O $\cdots \mathrm{O}$ $=2.682(4) \AA$ and $\left.\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=172(6)^{\circ}\right]$. Four hydrogenbonding chains of translationally related molecules pass through the cell orthogonal to the 4_{3} screw axis along c, alternating in the 110 and the $\overline{1} 10$ direction, with alignment with respect to this axis of ++-- . Successive chains are rotated by 90° around the c axis. One $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ close contact, involving the carboxyl group, exists.

Related literature

For a discussion of highly ordered carboxyl bond distances and angles, see: Borthwick (1980). For close contact information, see: Steiner (1997). For related structures, see: Abell et al. (1991); Chen et al. (2000); Desiraju (1989); Halfpenny (1990); Jacques et al. (1981); Kawai et al. (1985); McGuire et al. (1995). For background information regarding the crystallization of a single chiral conformer from a racemic solution, see: Kondepudi et al. (1990). For anti-isoketopinic acid, see: Lalancette et al. (1997). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}$
$M_{r}=156.18$
Tetragonal, $P 4_{3}$
$a=6.8531$ (12) A
$c=17.372(3) \AA$
$V=815.9(3) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$\mu=0.80 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.28 \times 0.20 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a)
$T_{\text {min }}=0.806, T_{\text {max }}=0.882$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.113$
$S=1.18$
1310 reflections
105 parameters
1 restraint

6963 measured reflections 1310 independent reflections 1274 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	$0.75(6)$	$1.94(6)$	$2.682(4)$	$172(6)$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.99	2.51	$3.439(5)$	156

Symmetry codes: (i) $x-1, y-1, z$; (ii) $y,-x+1, z+\frac{1}{4}$.
Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge support by NSF-CRIF grant No. 0443538. This paper is dedicated to the memory of HWT: he was a wonderful mentor, teacher and friend at Rutgers University-Newark for 44 years; he will surely be missed.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5037).

References

Abell, A. D., Trent, J. O. \& Morris, K. B. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1077-1083.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.
Bruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, C.-D., Brunskill, A. P. J., Hall, S. S., Lalancette, R. A. \& Thompson, H. W. (2000). Acta Cryst. C56, 1148-1151.

Desiraju, G. R. (1989). Crystal Engineering: the Design of Organic Solids, pp. 240-244. New York: Elsevier.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Halfpenny, J. (1990). Acta Cryst. C46, 2487-2489.
Jacques, J., Collet, A. \& Wilen, S. H. (1981). Enantiomers, Racemates, and Resolution, pp. 14-15. New York: Wiley-Interscience.

organic compounds

Kawai, K.-I., Ito, H., Nagase, H., Yamaguchi, R. \& Nakajima, S. (1985). Acta Cryst. C41, 415-417.
Kondepudi, D. K., Kaufman, R. J. \& Singh, N. (1990). Science, 250, 975-977.
Lalancette, R. A., Coté, M. L. \& Thompson, H. W. (1997). Acta Cryst. C53, 370-372.

McGuire, J. N., Wilson, S. R. \& Rinehart, K. L. (1995). J. Antibiot. 48, 516-519. Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
Steiner, T. (1997). Chem. Commun. pp. 727-734.

supplementary materials

4-Oxocyclohexaneacetic acid: catemeric hydrogen bonding and spontaneous resolution of a single conformational enantiomer in an achiral $\boldsymbol{\varepsilon}$-keto acid

A. Barcon, A. P. J. Brunskill, R. A. Lalancette and H. W. Thompson

Comment

The similar carbonyl basicities of carboxylic acids and ketones allow the two to compete as hydrogen-bond acceptors. Hence, simple keto acids display three known solid-state H-bonding modes beyond those seen in functionally unelaborated acids. The commonest, acid-to-ketone catemerization, constitutes a sizable minority of cases. The title compound aggregates as a catemer and crystallizes with only a single chiral conformer present.

Fig. 1 offers a view of the asymmetric unit. The expected staggering of substituents at C 1 and C 7 minimizes interactions with the axial H atoms at C 2 and C 6 by rotating the carboxyl away from the central $\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 7$ plane, thus producing a chiral conformation. The $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$ torsion angle is $-66.9(4)^{\circ}$ and the $\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 2$ torsion angle is $-9.9(6)^{\circ}$.

The averaging of $\mathrm{C}-\mathrm{O}$ bond lengths and $\mathrm{C}-\mathrm{C}-\mathrm{O}$ angles by disorder, common in carboxyl dimers, is not observed in catemers whose geometry cannot support the underlying averaging mechanisms involved. Here, these lengths and angles are typical of those for highly ordered dimeric carboxyls and catemers (Borthwick, 1980).

Fig. 2 shows the packing of the cell, with extracellular molecules to illustrate the H -bonding aggregation as translational carboxyl-to-ketone catemers around the 4_{3} screw axis coinciding with the c cell edge $[\mathrm{O} \cdots \mathrm{O}=2.682(4) \AA, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}=$ $\left.172(6)^{\circ}\right]$. Successive molecules in a given H-bonding chain advance alternately along the 110 and the -110 directions, with alignment with respect to the c axis of ++-- . Successive chains around the c axis are rotated by 90°. The structure therefore is comprised of stacked sheets in four orientations, each layer consisting of parallel H-bonding chains laid side-by-side. The arrangement is nearly identical with that we have previously reported for anti-isoketopinic acid (Lalancette et al., 1997).

We characterize the geometry of H bonding to carbonyls using a combination of $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ angle and $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}-\mathrm{C}$ torsion angle. These describe the approach of the acid H atom to the receptor O in terms of its deviation from, respectively, $\mathrm{C}=\mathrm{O}$ axiality (ideal $=120^{\circ}$) and coplanarity with the carbonyl (ideal $=0^{\circ}$). Here, these two angles are $128.6(16)$ and $-1.2(19)^{\circ}$.

Within the $2.6 \AA$ range we survey for non-bonded C-H \cdots O packing interactions (Steiner, 1997), only one close contact was found (see Table 2).

Although crystallization in space group P_{3} is itself quite unusual ($c a 0.12 \%$ of compounds in the Cambridge database), an equally unusual aspect of the packing is the presence of only a single chiral conformer. Preferential crystallization of one chiral conformer from solutions of an inherently achiral molecule is very rare but far from unknown (Jacques et al., 1981; Desiraju, 1989). Among keto acids, five cases are known of this phenomenon: [Cambridge Structural Database (CSD, Version 5.28, update of Nov., 2006; Allen, 2002) refcodes CUHCUD (Kawai et al., 1985), JISVAI (Abell et al., 1991), KICRIX (Halfpenny, 1990) \& ZEMJIK (McGuire et al., 1995)], plus the case of mesitylglyoxylic acid (Chen et al., 2000). The particular antipode crystallizing from such a solution may depend merely on which one chances to crystallize first, and it has been shown in a similar case that stirring seeds the solution and may largely or entirely prevent the enantiomeric

supplementary materials

species from crystallizing (Kondepudi et al., 1990). In the present instance, the Flack parameter allows us to assign a specific hand to (I), so the antipode actually illustrated is the correct one. Also, the octant rule predicts that the conformer should have (-) rotation.

Experimental

The solid-state (KBr) infrared spectrum of (I) has $\mathrm{C}=\mathrm{O}$ stretching absorptions at 1726 and $1685 \mathrm{~cm}^{-1}$, consistent with known shifts produced when H -bonding is removed from carboxyl $\mathrm{C}=\mathrm{O}$ and added to a ketone, respectively. In CHCl_{3} solution, these bands coalesce to a single absorption at $1707 \mathrm{~cm}^{-1}$, with a typical carboxyl-dilution shoulder around $1755 \mathrm{~cm}^{-1}$.

The title compound was prepared by Jones oxidation of the product obtained by catalytic hydrogenation of p-hydroxyphenylacetic acid over a Rh / C catalyst. The crystal used was obtained from $\mathrm{Et}_{2} \mathrm{O} /$ cyclohexane ($60: 40 \mathrm{v} / \mathrm{v}$) by evaporation, mp 345 K .

Refinement

All H atoms for (I) were found in electron density difference maps. The hydroxyl H was fully refined. The methylene and methine Hs were placed in geometrically idealized positions and constrained to ride on their parent C atoms with $\mathrm{C}-\mathrm{H}$ distances of 0.99 and $1.00 \AA$, respectively, and $U_{\text {iso }}(H)=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. A view of the asymmetric unit with its numbering. Displacement ellipsoids are set at the 40% probability level.

4-Oxocyclohexaneacetic acid

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}$
$M_{r}=156.18$
Tetragonal, $P 4_{3}$
Hall symbol: P 4cw
$a=6.8531$ (12) \AA
$c=17.372(3) \AA$
$D_{\mathrm{x}}=1.271 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 345 K
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 6759 reflections
$\theta=5.1-70.5^{\circ}$
$\mu=0.80 \mathrm{~mm}^{-1}$

$$
\begin{aligned}
& V=815.9(3) \AA^{3} \\
& Z=4 \\
& F(000)=336
\end{aligned}
$$

Data collection

Bruker SMART APEXII CCD area-detector

 diffractometerRadiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
$T_{\text {min }}=0.806, T_{\text {max }}=0.882$
6963 measured reflections
$T=100 \mathrm{~K}$
Block, colourless
$0.28 \times 0.20 \times 0.16 \mathrm{~mm}$

1310 independent reflections
1274 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=70.8^{\circ}, \theta_{\text {min }}=6.5^{\circ}$
$h=-7 \rightarrow 7$
$k=-8 \rightarrow 7$
$l=-20 \rightarrow 18$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.113$
$S=1.18$
1310 reflections
105 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Flack parameter: 0.0 (4)

Special details

Experimental. crystal mounted on a Cryoloop using Paratone-N
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
O1	$0.9958(3)$	$1.2372(3)$	$0.08526(13)$	$0.0341(5)$
O2	$0.2472(4)$	$0.6544(3)$	$0.03744(14)$	$0.0460(6)$
O3	$0.1245(4)$	$0.5683(4)$	$0.15016(13)$	$0.0421(6)$
H3	$0.083(6)$	$0.482(6)$	$0.130(2)$	$0.036(11)^{*}$
C1	$0.4571(4)$	$0.9768(4)$	$0.10334(18)$	$0.0275(6)$
H1	0.3956	1.0155	0.0534	0.033^{*}
C2	$0.6441(4)$	$0.8617(4)$	$0.08592(17)$	$0.0289(7)$
H2A	0.7056	0.8208	0.1349	0.035^{*}
H2B	0.6105	0.7426	0.0565	0.035^{*}
C3	$0.7890(4)$	$0.9841(4)$	$0.03955(19)$	$0.0299(6)$
H3A	0.9128	0.9109	0.0342	0.036^{*}
H3B	0.7358	1.0064	-0.0127	0.036^{*}
C4	$0.8297(4)$	$1.1764(4)$	$0.07670(18)$	$0.0294(7)$
C5	$0.6532(5)$	$1.2912(4)$	$0.10375(19)$	$0.0340(7)$
H5A	0.5867	1.3494	0.0587	0.041^{*}
H5B	0.6967	1.3990	0.1376	0.041^{*}
C6	$0.5086(4)$	$1.1616(4)$	$0.14778(18)$	$0.0309(7)$
H6A	0.5662	1.1249	0.1980	0.037^{*}
H6B	0.3879	1.2365	0.1580	0.037^{*}
C7	$0.3105(4)$	$0.8534(4)$	$0.14873(17)$	$0.0284(6)$
H7A	0.3757	0.8031	0.1956	0.034^{*}
H7B	0.2019	0.9386	0.1656	0.034^{*}
C8	$0.2272(4)$	$0.6841(4)$	$0.10499(17)$	$0.0285(7)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0344(12)$	$0.0356(12)$	$0.0322(12)$	$-0.0107(9)$	$-0.0004(9)$	$0.0009(9)$
O2	$0.0644(16)$	$0.0488(14)$	$0.0248(12)$	$-0.0289(12)$	$0.0023(12)$	$-0.0052(10)$
O3	$0.0544(15)$	$0.0413(14)$	$0.0305(12)$	$-0.0195(12)$	$0.0077(11)$	$-0.0039(11)$
C1	$0.0327(15)$	$0.0281(15)$	$0.0217(14)$	$-0.0034(12)$	$-0.0037(12)$	$0.0028(12)$
C2	$0.0366(16)$	$0.0244(15)$	$0.0258(16)$	$-0.0003(12)$	$-0.0009(13)$	$-0.0002(12)$
C3	$0.0321(16)$	$0.0318(15)$	$0.0257(15)$	$0.0002(12)$	$-0.0033(13)$	$0.0002(13)$
C4	$0.0353(16)$	$0.0308(15)$	$0.0222(14)$	$-0.0054(13)$	$-0.0014(13)$	$0.0070(12)$
C5	$0.0407(18)$	$0.0254(16)$	$0.0358(18)$	$-0.0041(13)$	$-0.0004(14)$	$-0.0018(13)$
C6	$0.0282(15)$	$0.0294(16)$	$0.0352(17)$	$0.0007(11)$	$-0.0004(13)$	$-0.0025(14)$
C7	$0.0311(15)$	$0.0299(15)$	$0.0244(15)$	$-0.0004(11)$	$-0.0004(12)$	$0.0015(12)$
C8	$0.0270(15)$	$0.0351(16)$	$0.0234(16)$	$0.0001(12)$	$-0.0016(12)$	$0.0002(12)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 4$	$1.222(4)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.199(4)$
$\mathrm{O} 3-\mathrm{C} 8$	$1.319(4)$
$\mathrm{O} 3-\mathrm{H} 3$	$0.74(4)$

C3-H3A	0.9900
C3-H3B	0.9900
C4-C5	$1.518(4)$
C5-C6	$1.535(4)$

sup-4

supplementary materials

C1-C6	1.524 (4)
C1-C7	1.532 (4)
C1-C2	1.535 (4)
C1-H1	1.0000
C2-C3	1.529 (4)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900
C2-H2B	0.9900
C3-C4	1.494 (4)
C8-O3-H3	114 (3)
C6-C1-C7	110.5 (2)
C6- $\mathrm{C} 1-\mathrm{C} 2$	109.5 (2)
C7- $\mathrm{C} 1-\mathrm{C} 2$	111.4 (2)
C6-C1-H1	108.5
C7- $\mathrm{C} 1-\mathrm{H} 1$	108.5
C2- $\mathrm{C} 1-\mathrm{H} 1$	108.5
C3-C2-C1	111.4 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.4
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	112.2 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.2
C2-C3-H3B	109.2
H3A-C3-H3B	107.9
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	121.8 (3)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	121.9 (3)
C3-C4-C5	116.3 (3)
C6-C1-C2-C3	-58.4 (3)
C7- $1-\mathrm{C} 2-\mathrm{C} 3$	179.1 (2)
C1-C2-C3-C4	52.9 (3)
C2-C3-C4-O1	132.3 (3)
C2-C3-C4-C5	-47.3 (4)
O1-C4-C5-C6	-133.5 (3)
C3-C4-C5-C6	46.0 (4)

C5-H5A	0.9900
C5-H5B	0.9900
C6-H6A	0.9900
C6-H6B	0.9900
C7-C8	$1.500(4)$
C7-H7A	0.9900
C7-H7B	0.9900
C4-C5-C6	$111.6(2)$
C4-C5-H5A	109.3
C6-C5-H5A	109.3
C4-C5-H5B	109.3
C6-C5-H5B	109.3
H5A-C5-H5B	108.0
C1-C6-C5	$112.2(2)$
C1-C6-H6A	109.2
C5-C6-H6A	109.2
C1-C6-H6B	109.2
C5-C6-H6B	109.2
H6A-C6-H6B	107.9
C8-C7-C1	$114.6(2)$
C8-C7-H7A	108.6
C1-C7-H7A	108.6
C8-C7-H7B	108.6
C1-C7-H7B	108.6
H7A-C7-H7B	107.6
O2-C8-O3	$122.8(3)$
O2-C8-C7	$125.7(3)$
O3-C8-C7	$111.5(3)$
C7-C1-C6-C5	$-179.2(3)$
C2-C1-C6-C5	$57.8(3)$
C4-C5-C6-C1	$-51.0(3)$
C6-C1-C7-C8	$171.1(2)$
C2-C1-C7-C8	$-67.0(3)$
C1-C7-C8-O2	$-9.6(4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 3$
C1	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	$0.75(6)$	$1.94(6)$	$2.682(4)$	$172(6)$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.99	2.51	$3.439(5)$	156

Symmetry codes: (i) $x-1, y-1, z$; (ii) $y,-x+1, z+1 / 4$.

supplementary materials

Fig. 1

Fig. 2

